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ABSTRACT: The prediction of wintertime extratropical cyclone activity (ECA) on subseasonal time scales by models

participating in the Subseasonal Experiment (SubX) and the Seasonal to Subseasonal Prediction (S2S) is assessed.

Consistent with a previous study that investigated the S2S models, the SubX models have skillful predictions of ECA over

regions from central North Pacific across North America to western North Atlantic, as well as East Asia and northern and

southern part of easternNorthAtlantic at 3–4weeks lead time. SubXprovides dailymeandata, while S2Sprovides instantaneous

data at 0000 UTC each day. This leads to different variance of ECA. Different S2S and SubX models have different reforecast

initialization times and reforecast time periods. These factors can all lead to differences in prediction skill. To fairly compare the

prediction skill between different models, we develop a novel way to evaluate the prediction of individual model across the two

ensembles by comparing every model to the Climate Forecast System, version 2 (CFSv2), as CFSv2 has 6-hourly output and

forecasts initialized every day. Among the S2S and SubX models, the European Centre for Medium-RangeWeather Forecasts

model exhibits the best prediction skill, followed by CFSv2. Our results also suggest that while the prediction skill is sensitive to

forecast lead time, including forecasts up to 4 days old into the ensemble may still be useful for weeks 3–4 predictions of ECA.

KEYWORDS: Ensembles; Forecast verification/skill; Hindcasts; Intraseasonal variability

1. Introduction

Extratropical cyclones have large impacts on regional

weather and climate. They also have significant societal im-

pacts, as these cyclones can bring heavy precipitation, strong

winds, storm surge, and heavy snowfall, especially in winter-

time. Therefore, accurate predictions of extratropical cyclone

activity (ECA) can help to secure life and property against

disastrous events, and provide useful information for decision

makers in transportation, water security, agriculture and en-

ergy. To take multiple extratropical cyclones into account on

weekly to seasonal time scales, the aggregate paths of extra-

tropical cyclones, also referred to as extratropical storm tracks,

are often used to represent ECA. Previous works have exten-

sively studied observational, theoretical, and modeling aspects

of ECA [see the review papers by Chang et al. (2002) and

Shaw et al. (2016)]. Different phenomena can modulate ECA

on various time scales (Chang et al. 2002; Chang et al. 2013;

Stockdale et al. 2010). El Niño–Southern Oscillation (ENSO)

significantly modulates Northern Hemisphere (NH) ECA on

interannual time scales (Straus and Shukla 1997; Zhang and

Held 1999; Eichler and Higgins 2006; Ma and Chang 2017).

During El Niño years, an equatorward and eastward shift of

boreal winter ECA is found over the Pacific, and ECA over

North America weakens. The Madden–Julian oscillation

(MJO) has significant impact on ECA over the North Pacific,

the North Atlantic, and North America (Zheng et al. 2018;

Deng and Jiang 2011; Lee and Lim 2012; Guo et al. 2017) via

the MJO-induced Rossby waves that propagate into the mid-

latitudes. The quasi-biennial oscillation (QBO) gives rise to

variability of NH ECA as well, especially in the upper tropo-

sphere (Wang et al. 2018a). Note that QBO also modulates the

MJO impact on ECA over the Pacific (Wang et al. 2018b). The

polar vortex in the NH stratosphere also has significant influ-

ence on ECA (Kidston et al. 2015; Scaife et al. 2012), especially

over the North Atlantic (e.g., Walter and Graf 2005). Through

the ‘‘downward control’’ mechanism (Haynes et al. 1991), the

midlatitude jet and the North Atlantic Oscillation (NAO) are

modulated by stratospheric wind anomalies, resulting in en-

hanced or suppressed ECA due to stronger or weaker zonal

flow. The phenomenon mentioned above can be potential

predictors for ECA on subseasonal time scales.

On the weather time scale, the track and intensity of a single

extratropical cyclone can be skillfully predicted with a few days

of lead time (e.g., Froude et al. 2007a,b; Froude 2010). For

longer time scales (more than 2 weeks), due to the chaotic

nature of the atmosphere, a single extratropical cyclone is not

expected to be well predicted (Froude et al. 2007a,b; Froude

2010). Thus, for subseasonal prediction in this study, we will

focus on ECA, which represents the aggregated influences

(e.g., pressure, wind, eddy kinetic energy) of multiple extra-

tropical cyclones. There have been two ways to represent

ECA, the first uses cyclone tracks (e.g., Klein 1957), and the

second uses statistics on gridded atmospheric data, for exam-

ple, using variance of meridional wind or mean sea level

pressure (MSLP) in a frequency band covering the synoptic

time scales (e.g., Blackmon 1976; Lau 1978; Chang and Fu

2002). As passages of extratropical cyclones close to a given
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location generates pressure perturbations as well as wind

anomalies, temporal variance of pressure or wind at a grid

point can capture the aggregate influence of extratropical cy-

clones over time. In this study, we apply a 24-h difference filter

(Wallace et al. 1988) onto MSLP data to define ECA:

ECApp5 [MSLP (t1 24 h ) –MSLP (t )]2 , (1)

where t is any time step of Reanalysis or forecast dataset. Hence

ECA is quantified at each grid point by the mean square of the

24-h difference of MSLP. The overbar represents averaging over

time, which can be 1 week, 2 weeks, or 1 month. As shown by

previous studies (e.g., Chang andFu 2002;Wallace et al. 1988), the

maxima from this 24-h difference filter, lie over locations where

extratropical cyclones preferentially cross (see also Fig. 1a). Thus,

the variance statistics of MSLP can be a good measure of ECA.

Both cyclone tracks and variance statistics have been used to

evaluate ECA prediction by climate prediction models for

subseasonal to seasonal forecasts. Befort et al. (2019) used

cyclone tracks based on MSLP to assess seasonal prediction of

ECA by the European Centre for Medium-Range Weather

Forecasts (ECMWF) and British Meteorological Office cli-

mate prediction models in terms of ensemble mean cyclone

track density, and found some skill on seasonal time scales over

the North Atlantic, which is related to the North Atlantic

Oscillation. Lukens and Berbery (2019) used cyclone tracks

based on 850-hPa potential vorticity to assess subseasonal

prediction of ECA by the National Centers for Environmental

Prediction (NCEP) Climate Forecasting System, version 2

(CFSv2). They found that the root-mean-square errors in bias-

corrected cyclone frequency and amplitude are close to or

exceed one standard deviation, suggesting little prediction

skill. However, Lukens and Berbery (2019) only used one

single forecast member to estimate the prediction skill on

subseasonal time scales. Usually the skill of an ensemble of

multiple members has higher skill, as averaging over multiple

members reduces the noise in the forecast data. Yang et al.

(2015) assessed seasonal ECA predictions by the Geophysical

Fluid Dynamics Laboratory climate predictionmodel based on

MSLP variance. They found skill associated with the ENSO out

to lead times of 9 months. Zheng et al. (2019; hereafter Z19) also

used variance statistics based on MSLP to assess predictions of

ECA in subseasonal to seasonal time scale (see below). The

method to defineECA in this study [Eq. (1)] is the same as that in

Z19. Z19 found that models that participated in the Seasonal to

Subseasonal Prediction (S2S) project (Vitart et al. 2017) show

significant prediction skill over East Asia, the central and eastern

North Pacific, the central part of North America, Gulf of Mexico

and the western Caribbean Sea, the central North Atlantic, as

well as Scandinavia and the Norwegian Sea in week 3–4

predictions. The sources of predictability are mainly related to

ENSO and the polar vortex. While the MJO can potentially be

an important source of subseasonal predictability, the S2S

models do not accurately capture the MJO’s impact on ECA.

In addition, Z19 did not find significant contributions directly

from the QBO to ECA subseasonal predictions.

In this study, methods similar to Z19 will be applied to the

models participating in the Subseasonal Experiment (SubX;

Pegion et al. 2019) to evaluate model prediction skill. In ad-

dition, we will also compare model performance among S2S

and SubX models. ECA is derived from MSLP data in this

study. S2S provides instantaneous MSLP data at 0000 UTC

each day, while SubX provides daily mean MSLP data. This

results in different variability of ECA (see more details in

section 2), which makes it inappropriate to combine the S2S

and SubX models into a larger ensemble. Also, whether this

difference in ECA variability between the SubX and S2S en-

sembles will lead to differences in prediction skill will be ex-

plored in this study. In addition, different models in the

SubX and S2S ensembles perform reforecasts with different

FIG. 1. (a) Climatology of the Northern Hemisphere extratropical cyclone activity (ECA; hPa2) for 1979–2017 winters (December–

February) based on all ERA-Interim reanalysis daily mean sea level pressure (MSLP) data. (b) Standard deviation of 7-day runningmean

ECA (hPa2). (c) Standard deviation of 14-day running mean ECA (hPa2).
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initialization times and reforecast periods, which can lead to

different prediction skill (sections 3 and 4). In this study, we

will introduce a method to compare any SubX or S2S model to

CFSv2 in a fair way.AsCFSv2 is frequently initialized (every 6 h)

with 6-hourly output available, one can construct a subsample of

CFSv2 reforecasts, which has the same reforecast initialization

time as that of any model. Then this subsample of CFSv2 can be

fairly compared with that model. In this way, CFSv2 provides a

bridge to compare the skill among different models. In section 2,

the datasets and metrics to evaluate ECA predictions will be

introduced. Prediction skill of ECA in SubX models will be

evaluated in section 3. The comparison between SubX and S2S

ensembles will be provided in section 4. The conclusions and

some implications of this study will be discussed in section 5.

2. Data and methods

a. Data

1) SUBX AND S2S MODELS

At the time the analyses were performed, sevenmodels from

six participating modeling groups from the SubX dataset have

available MSLP data with complete wintertime [December–

January–February (DJF)] reforecasts. We make use of five of

themodels: ECCC-GEPS5, EMC-GEFSESRL-FIM,GMAO-

GEOS, and RSMAS-CCSM4 (see Table 1; we have problems

processing the MSLP data from the other two models in SubX,

see Text S1 in the online supplemental material). These five

models have different ensemble sizes, reforecast initialization

frequency, forecast time ranges and resolutions (see Table 1).

Some of the models have coupled ocean and sea ice compo-

nents, while others do not. We make use of daily MSLP data

on a 18 3 18 horizontal resolution grid from the SubX dataset.

The dailyMSLP is themean of 0000, 0600, 1200, and 1800UTC

of each day. ECA prediction will be evaluated during the

overlapping period of SubX models (from DJF 1999/2000 to

DJF 2015/16; 17 seasons in total).

To compare model prediction skill between SubX and S2S

models, we make use of the six models from the S2S dataset

evaluated by Z19 (CMA, CNR-ISAC, CNRM, ECCC-GEM,

ECMWF, and HMCR; see Table 2). Similar to SubX models,

there are also significant differences in the setup among the S2S

models. MSLP data are available on a 1.58 3 1.58 horizontal
resolution grid at 0000 UTC at each forecast day for S2S

TABLE 1. The description of SubX models that are used in this study. Note that for NCEP-CFSv2, we directly use the NCEP-CFSv2

reforecast and operational forecast, as MSLP is not archived in the SubX website. See main text for ensemble size of NCEP-CFSv2.

Model

Time

range

Atmosphere

model resolution

Reforecast

frequency

Reforecast

period

Reforecast

Sizes

Ocean

coupling

Sea ice

coupling

Environmental and Climate

Change Canada Global

Ensemble Prediction System

(ECCC-GEPS5)

Day 0–32 0.458 3 0.458; 40
levels;

Weekly 1998–2017 4 No No

National Centers for

Environmental Prediction

(NCEP) Environmental

Modeling Center, Global

Ensemble Forecast System

(EMC-GEFS)

Day 0–35 T574L64 for 0–8

day and T382

for 8–35 day

Weekly 1999–2016 11 No No

National Oceanic and

Atmospheric Administration,

Earth System Research

Laboratory, Flow-Following

Icosahedral Model (ESRL-FIM)

Day 0–32 ;60 km; 64

vertical layers;

Weekly 1999–2016 4 Yes Yes

National Aeronautics and Space

Administration, Global

Modeling and Assimilation

Office, Goddard Earth

Observing System

(GMAO-GEOS)

Day 0–45 GEOS5–0.58
horizontal

resolution; 72

vertical layers

Every 5 days 1999–2016 4 Yes Yes

National Center for Atmospheric

Research Community Climate

System Model, version 4 run at

the University of Miami

Rosenstiel School for Marine

and Atmospheric Science

(RSMAS-CCSM4)

Day 0–45 0.98 3 1.258; L26 Weekly 1999–2016 3 Yes Yes

National Centers for

Environmental Prediction,

Climate Forecast System,

version 2 (NCEP-CFSv2)

Day 0–45 T126 L64 Every 6 h — — Yes Yes
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models. Z19 evaluated S2S model predictions over their

overlap period from DJF 1997/98 to 2009/10. Here, when

comparing models across SubX and S2S, only reforecasts in

DJF from 1999/2000 to 2009/10 will be evaluated for both

datasets.

CFSv2 (Saha et al. 2014; also see Table 1) participates in

both the SubX and S2S projects. As MSLP data from CFSv2 is

not archived in the SubX dataset, here we directly use the 6-

hourly MSLP forecast data from CFSv2 reforecasts (1999–

2011) and operational forecasts (2011–16). These reforecasts

(or operational forecasts) are initialized every 6 h, and MSLP

data are available on a 18 3 18 horizontal resolution grid every

6 h. In this study, CFSv2 is combined into both the SubX

multimodel ensemble (MME) and S2S MME. To be con-

sistent with other SubX models, when comparing with SubX

models or constructing the SubX MME, CFSv2 ECA is

calculated by using daily mean MSLP (average of MSLP at

0000, 0600, 1200, and 1800 UTC). Similarly, when compar-

ing with S2S models or constructing the S2S MME, CFSv2

ECA is calculated by usingMSLP at 0000 UTC, which is also

regrided from 18 resolution to 1.58 resolution. As discussed

in the introduction, frequent reforecasts with 6-hourly

output available makes CFSv2 the bridge to compare dif-

ferent SubX and S2S models.

CFSv2 only provides one hindcast at each 6-hourly initiali-

zation time. One commonway to combine the CFSv2members

into an ensemble is to use the lagged ensemble method (e.g.,

Chen et al. 2010, 2013; Riddle et al. 2013; Zhu et al. 2013). Chen

et al. (2013) showed that the optimal number of lagged en-

semble members that should be included in a lagged-ensemble

is determined by a balance between two competing factors:

increase in prediction skill due to a larger ensemble, and deg-

radation of skill due to inclusion of members with longer lead

times. They also showed that the optimal number depends

critically on the variable predicted. Here, we use a 16-member

lagged ensemble of CFSv2 (a lagged ensemble by using all

reforecasts initialized within 4 days) for two reasons. First,

when we construct the SubX or S2SMME, only the reforecasts

initialized within 4 days are included (see more details in

section 2b and Z19), the construction of the 16-member CFSv2

lagged ensemble is consistent with the way we construct the

SubX or S2S MME. More importantly, as we will show later,

the weeks 3–4 prediction skill of the lagged CFSv2 ensemble is

still marginally increasing as we add members with longer lead

TABLE 2. The description of S2S models that are used in this study. Note that for NCEP-CFSv2, we directly use the NCEP-CFSv2

reforecast and operational forecast. Seemain text for ensemble size of NCEP-CFSv2.Also note that NCEP-CFSv2 andECCC-GEPS5 are

not included in the S2S ensemble in Z19. As NCEP-CFSv2 ensemble is ‘‘initialized’’ every day (see main text), we also combine NCEP-

CFSv2 into the S2S MME in this study. As combining ECCC-GEPS5 into the S2S MMEwill significantly reduce the number of available

MME cases, ECCC-GEPS5 is not combined into the S2S MME. But we will compare ECCC-GEPS5 prediction skill with individual

models in the S2S ensemble.

Model

Time

range

Atmosphere

model resolution

Reforecast

frequency

Reforecast

period

Reforecast

Sizes

Ocean

coupling

Sea ice

coupling

China Meteorological

Administration (CMA)

Day 0–60 T106 L40 Daily 1994–2014 4 Yes Yes

Institute of Atmospheric

Sciences and Climate of the

National Research Council

(CNR-ISAC) (model version

date 6 Jun 2017)

Day 0–32 0.758 3 0.568 L54 Every 5 days 1981–2010 5 No No

Météo-France/Centre National

de Recherche

Meteorologiques (CNRM)

Day 0–61 T255 L91 4 times a month 1993–2014 15 Yes Yes

Environment and Climate

Change Canada Model

(ECCC-GEM) version:

GEM Jan-2016

Day 0–32 0.458 3 0.458 L40 Weekly 1995–2014 4 No No

European Centre for Medium-

Range Weather Forecasts

(ECMWF) Model version:

CY43R3

Day 0–46 Tco639/319 L91 Twice a week 1997–2016 11 Yes Yes

Hydrometeorological Centre

of Russia (HMCR)

Day 0–61 1.18 3 1.48 L28 Weekly 1985–2010 10 No No

National Centers for

Environmental Prediction,

Climate Forecast System,

version 2 (NCEP-CFSv2)

Day 0–45 T126L64 Every 6 h — — Yes Yes

Environment and Climate

Change Canada (ECCC-

GEPS5) Model version:

GEPS5 Sep 2018

Day 0–32 0.358 3 0.358 L45 Weekly 1997–2016 4 No No
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time up to 16 members. Therefore, we believe that it is rea-

sonable to construct the 16-member CFSv2 ensemble for

weeks 3–4 prediction of ECA. Given that all other SubX

models used in this study have initialization times that are

separated by more than 4 days (see Table 1), CFSv2 is the only

model that lagged ensemble is used.

2) REANALYSIS AND OTHER DATASETS

ECA calculated from European Centre for Medium-Range

Weather Forecasts (ECMWF) interim reanalysis (ERA-

Interim; Dee et al. 2011). MSLP is used as the verification for

ECA hindcasts in this study. When verifying SubX data, daily

averages of MSLP are calculated from 6-hourly ERA-Interim

MSLP on a 0.758 3 0.758 grid, and then regrided onto a 18 3 18
horizontal resolution grid. MSLP data at 0000 UTC is regrided

to a 1.58 3 1.58 grid when verifying S2S models.

The phase of ENSO is defined by the Niño-3.4 index, which
is obtained from the National Oceanic and Atmospheric

Administration (NOAA) Earth System Research Laboratory

(ESRL) website. This index is calculated from the Hadley

Centre’s Sea Ice and Sea Surface Temperature (SST) dataset

(HadISST1; Rayner et al. 2003).

b. Methods

1) DEFINITION OF ECA

As discussed in the introduction, ECA is defined by applying

a 24-h difference filter on MSLP data [Eq. (1)]. Daily MSLP is

used for SubX data, while 0000 UTC instantaneous MSLP is

used for S2S data. The winter climatology of ECA, as well as

variability on weekly, and biweekly (week 3–4 prediction skill

is evaluated in this study) time scales, are shown in Fig. 1. The

variability is defined as the standard deviation of weekly or

biweekly ECA during DJF in reanalysis. Figure 1a shows that

ECA and its variability are maximized over the midlatitude

oceanic basins, along a band extending from the western

Pacific, across North America, the Atlantic, into northern

Europe. Most of the contribution of ECApp is from extra-

tropical cyclones and anticyclones, with almost no contribution

from tropical cyclones, and the climatological ECApp is very

small in the tropics (Fig. 1a). This is also the case for other

seasons, including summer (not shown). Previous studies have

shown that monthly and seasonal variations in ECA as defined

by (1) are well correlated with variations in precipitation and

weather extremes (e.g., Chang et al. 2015; Yang et al. 2015; Ma

and Chang, 2017) in many midlatitude regions.

Although the climatologies of ECA computed using daily

mean MSLP (Fig. 1a) and 0000 UTC MSLP (Fig. 1a in Z19)

data look very similar, the amplitudes of reanalysis winter bi-

weekly variability, (Fig. 1c and Fig. S1f in the online supple-

mental material; Fig. S1f is the same as Fig. 1c in Z19) are very

different. The differences in Fig. 1c and Fig. S1f are not due to

the differences in spatial resolution. As shown in Figs. S1c and

S1d, compared with Figs. 1b and 1c (or Figs. S1a,b, which are

the same), ECA variability computed on a 1.08 grid and on a

1.58 grid are almost identical, which is not surprising since the

two different data resolutions merely represent regridding

from the same original data. Thus, the differences in the

amplitudes of weekly or biweekly variability are due to the use

of daily mean MSLP versus 0000 UTC instantaneous MSLP to

calculate ECA. The reason is that 0000 UTC MSLP is noisier

than daily meanMSLP. Hence the variance of ECA calculated

from 0000UTCMSLP (Fig. S1f; or Fig. 1c in Z19) is larger than

that calculated from daily mean MSLP (Fig. 1c). As using

0000 UTC MSLP or daily mean MSLP leads to different var-

iability of ECA in reanalysis data, certainly it will also lead to

different ECA variability calculated from S2S and SubX

models. With different amplitude of variability in ECA simply

because of the way MSLP is archived but not because of the

models themselves, it is inappropriate to combine ECA from

SubX and S2Smodels into a larger ensemble and then calculate

ensemble mean. Also, with the differences in ECA variability,

whether using daily mean MSLP or 0000 UTCMSLP will lead

to differences in the prediction skill of ECA remains unclear.

This will be examined in section 4.

2) CLIMATOLOGY AND ANOMALIES OF ECA

Bias corrections for subseasonal forecasts are important as

the model bias can become dominant on subseasonal time

scales (e.g., Monhart et al. 2018). For SubX models, a model

climatology that depends on the model initialization time and

forecast day (e.g., forecast day 1, forecast day 2. . .) is defined to

correct the model bias of ECApp but not MSLP. Similar to

Z19, all the reforecast of ECA of one single model can be

written as ECAppmodel(y, d, n, f ), where y is year, d is initiali-

zation day during each year, f is the forecast lead day. n5 1, . . . ,

N, whereN is the number of ensemblemembers for eachmodel.

The model climatology at each grid point, which depends on the

reforecast initialization time and forecast day, is obtained by

averaging all the years and removing the first four harmonics of

the annual cycle:

ECApp
cli
(d, f )5

�
y
�
n

ECApp
model

(y,d,n, f )

N3Y
. (2)

Here,Y is the total number of years. Model anomalies are then

defined as the deviation from model climatology:

ECApp
ano

(y,d,n, f )5ECApp
model

(y,d,n, f )2ECApp
cli
(d, f ).

(3)

Note that each model has its own climatology ECAppcli(d, f ),

and the anomaly of each model ECAppano is the deviation

from the model’s own climatology ECAppcli(d, f ). Following

Z19, ECA model climatology and anomaly for the S2S models

are defined similarly. Also, as discussed in Z19, the similar

method can be applied to define reanalysis climatology and

anomalies, except that there is only one ensemble member for

the reanalysis and the reanalysis climatology does not depend

on the forecast day.

3) COMBINING DIFFERENT MODELS INTO AN MME

It has been shown by previous studies that in terms of

prediction skill, a multimodel ensemble (MME) usually

outperforms a single model (e.g., Hagedorn et al. 2005; Smith

et al. 2013; Becker et al. 2014). In addition, Z19 shows that
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combining S2S models into an MME is beneficial to ECA

subseasonal forecast. Here, we also combine the SubX models

into an MME. Since the reforecasts are initialized on different

dates for different SubXmodels, we follow a procedure similar

to Z19 to construct the MME. During the overlapping winter

seasons of the SubX models (DJF from 1999/2000 to 2015/16),

for every day and every model, we define the lead time of the

reforecast. The lead time at any day of a model forecast is the

gap between this day and the initialization time of the nearest

reforecast earlier than this day. We select the days as day 0 of

the MME if that day satisfies all the following requirements: 1)

Every model has a lead time less than or equal to 4 days. 2) If

continuous days satisfy the requirement (1), only the earliest

day is selected (to make the lead time smallest). 3) The aver-

aged lead time of the 6 S2S models is smaller than 1.5 days.

There are 182 cases that we can combine the SubXmodels into

an MME in 17 winter seasons. The procedure here is the same

as Z19, except for the additional requirement 3. This require-

ment is added not only to reduce the lead time of the models

(which is important for the prediction skill, see sections 3 and

4), but also to reduce the MME case frequency from about

twice a week to about once a week. As the reforecasts of four

SubX models are initialized once a week, we want to make the

frequency of MME cases to be about once a week in order to

avoid using one run of any model in multiple MME cases.

4) PREDICTION SKILL OF ECA

We use the anomaly correlation coefficient (ACC) to assess

the model prediction skill. The association between the

anomalies in forecast and analysis can be represented by the

ACC. When calculating the ACC, we use the ensemble mean

(EM) of a single model, or the EM of an MME (every model

member is weighted equally). The ACC at any grid point can

be written as

ACC5

�
y
�
d

ECAppEM
ano(y, d)ECAppobs

ano(y,d)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
y
�
d

[ECAppEM
ano(y,d)]

2�
y
�
d

[ECAppobs
ano(y,d)]

2
r , (4)

where ECAppEM
ano(y, d) represents the ensemble mean of

model forecast anomalies, and ECAppobs
ano(y, d) is the anomaly

in the reanalysis data. Following Z19, only weekly or biweekly

ACC is calculated. We have also examined the Heidke skill

score, but the results are consistent with those using ACC as

well as the results presented in Z19 and thus are not shown (see

Text S2 in the supplemental material).

5) COMPARISON OF PREDICTION SKILL BETWEEN

CFSV2 AND OTHER MODELS

As the reforecasts are initialized differently among the SubX

models, usually the number of reforecasts and the reforecast

initialization times are different between any of two SubX

models. After combining the SubX models into an MME, the

number of reforecasts is the same. But different models have

different lead time in the MME. As lead time can degrade the

forecast skill (see section 3), it may not be fair to directly

compare the forecast skill of two models using theMME cases.

As CFSv2 ensemble is available every day, here we develop a

way to directly compare CFSv2 versus any other model. For

any model in the SubX ensemble, say EMC-GEFS, we just

use a subsample of the CFSv2 ensemble. We make this sub-

sample of CFSv2 reforecasts have the same reforecast initial-

ization dates as EMC-GEFS. Then the forecast skill calculated

within this subsample of CFSv2 reforecast can be fairly com-

pared with EMC-GEFS, since they are both initialized during

the same dates. Note that here we still use the same method

mentioned above in this section to calculate forecast skill

(ACC), and the bias corrections of each model are still based

on the model’s own climatology. This method can show the

forecast skill of any model relative to CFSv2.

3. ECA predictions by SubX models

Weekly ACC for the MME of weeks 1–4 is shown in Fig. 2.

The prediction skill decreases from week 1 to 4, as the ACC is

above 0.6 almost everywhere in the midlatitudes in week 1

(Fig. 2a), and the highest ACC during week 4 (Fig. 2d) is only

0.3–0.4. Consistent with the S2S models (see Z19), starting

from week 2 (Figs. 2b–d), high ACC is found over east Asia,

the central and eastern North Pacific, the Bering Sea and

Alaska, central North America, the Gulf of Mexico and

western Caribbean Sea, and the North Atlantic along 308–458N
and 608–758N. Following Z19, weeks 3–4 (week 3 and week 4

combined) prediction will be the main focus here.

Weeks 3–4 ECAACC for several models and the MME are

shown in Fig. 3. Note that as discussed in Z19, models with

small ensemble sizes (e.g., fewer than five ensemble members)

generally have relatively low prediction skill. Therefore, the

models with smaller ensemble size in the SubX ensemble,

which are ECCC-GEPS5, ESRL-FIM, GMAO-GEOS, and

RSAMS-CCSM4, are combined into one larger ensemble.

ACC of these four models is shown in Fig. S2. This four-

model ensemble (Fig. 3e; equivalent to Fig. 3b without

EMC-GEFS) with 15 members, has better prediction skill

than the 11-member EMC-GEFS (Fig. 3c), but has lower

ACC than the 16-member CFSv2. CFSv2 has the best pre-

diction skill among the SubX models, in terms of single

model performance. The MME (Fig. 3a) has better predic-

tion skill than any single model. Combining the models

other than CFSv2 (Fig. 3b), provides similar prediction skill

compared to CFSv2.

Figure 4a shows the ACC averaged over the NH (north of

108N) of individual models and the MME for the 182 MME

cases. The x axis represents the size of the ensemble, which is

different for CFSv2 and for the other models. For the other

models in Fig. 4a, if the value of the x axis is equal to x, we

select x members from the total N members randomly for 200

times and use the average ACC of these 200 samples as the

ordinate. For CFSv2, as different ensemble members have

different lead times, we use the ACC of the latest member for

x 5 1, the ACC of the ensemble combining the latest two

members for x5 2, and so on. Thus, the CFSv2 line (cyan line)

looks noisy as there is less averaging for each point for the line.

Nevertheless, we can see that the prediction skill for CFSv2

generally increases as the number of lagged-ensemble mem-

bers is increased, but the rate of increase slows considerably as
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the number of members reaches 16. Thus a 16-member lagged

ensemble for CFSv2 is appropriate.

The MME without CFSv2 (dashed blue line), which has 26

members, has similar ACC compared to the 16-member

CFSv2. It is quite clear that the MME (dashed red line) has

the best ACC. The five SubX models other than CFSv2, have

relatively similar performance, as the red, green, dark green,

purple, and blue solid lines are clustered together. EMC-GEFS

ensemble has highACC due to larger ensemble size. And these

fivemodels have lowerACC than CFSv2. One potential reason

is that with theMME cases here, the first member of CFSv2 has

no lead time (as it is initialized every 6 h), while all members of

the other models generally have nonzero lead times. In Fig. 4c,

we use all the available cases in CFSv2 (every day) in DJF and

show the NH averaged prediction skill of CFSv2 ensemble for

lead time from 0 to 3 days.We use the same 16members at lead

time 0. For lead time 1 only 12 members (the latest 4 members

excluded) are used, and so on. Therefore, the ensemble size is

FIG. 2. (a)–(d) Prediction skill [anomaly correlation coefficient (ACC)] of multimodel ensemble (MME, 42

ensemble members) of extratropical cyclone activity for week 1–4, respectively. The region A (50.58–60.58N,

110.58–78.58W) is plotted in (d). See Text S3 for definition of regionA. For the 182 cases that are investigated here, a

correlation of 0.15 is significant at 95% level. Note that the average interval between each case is about a week. In

addition, over most of the regions, autocorrelation with 1-week lag of weekly ECA is not significant at the

95% level.
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smaller for longer lead time. It is very clear that the prediction

skill systematically decreases with longer lead time. Thus, be-

cause of different lead times, it is not fair to compare CFSv2

with other models using the MME cases (Fig. 4a).

To better compare the other SubX models to CFSv2, we

plot the ACC of each individual model using all the available

cases of this model with 0 lead time (solid lines in Fig. 4b).

With the method discussed in section 2b, we use subsamples

of CFSv2 to compare the prediction skill of one model and

CFSv2. Each subsample of CFSv2 has the same initialization

times as one of the models. The ACC of the subsamples of

CFSv2 are plotted in dashed lines. The CFSv2 subsample

corresponding to each SubX model is plotted in the same

color as that model. For example, GMAO-GEOS is plotted

in the blue solid line. The subsample of CFSv2 corresponding

to GMAO-GEOS, is shown in the blue dashed line. Thus, the

comparison between one SubX model and CFSv2 can be

achieved by comparing the solid lines and the dashed lines

having the same color. By comparing the solid lines and the

dashed lines, it is clear that CFSv2 still outperforms the other

models. However, the margin between CFSv2 in Fig. 4b is

smaller than that in Fig. 4a. This is because for the five

models other than CFSv2, lead time is zero in Fig. 4b while

lead time is generally nonzero in Fig. 4a. Lead time degrades

the forecast skill, so the skill of these models is lower in

Fig. 4a. Note that different subsamples of CFSv2 (different

dashed lines in Fig. 4b) also show some variations in ACC,

especially for the red dashed line with 8–11 ensemble

member. This shows that even for the same model, different

selection of reforecast initialization dates can also result in

differences in prediction skill even when the same reforecast

period is considered. Note that this difference is of the same

order of magnitude (;0.01) as the model-to-model differ-

ence in forecast skill.

FIG. 3. (a) Prediction skill [anomaly correlation coefficient (ACC)] of week 3–4 extratropical cyclone activity for MME (42 members).

(b)–(d) As in (a), but for MME without NCEP-CFSv2 (26 members), EMC-GEFS (11 members), and NCEP-CFSv2 (16 members),

respectively. (e) As in (a), but for the MME of ECCC-GEPS5, ESRL-FIM, GMAO-GEOS, and RSMAS-CCSM4. For the 182 cases that

are investigated here, a correlation of 0.21 is significant at the 95% level. Note the over most of the regions, autocorrelation with 2-week

lag of biweekly ECA is not significant at the 95% level. As the average interval between each case is about a week, the estimated degree of

freedom is 91 (half of 182).
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We also make use of the Heidke skill score (HSS) as an al-

ternativemeasure to evaluate the prediction skill of themodels

(see Text S2). The conclusions we reach are very similar to

those in Z19. In addition, as discussed in Z19, for the S2S

models, the source of predictability of ECA is mainly from

ENSO and the stratospheric polar vortex. We use similar

methods and find that the source of predictability for the SubX

models also mainly comes from these two phenomena (see

Text S3–S5). These have been extensively discussed in Z19 and

will not be the focus of this study. In short, the SubX models

and S2S models have similar spatial pattern of prediction skill,

while the source of predictability is also similar (mainly from

ENSO and the stratospheric polar vortex. In the following

section, we will focus on comparing the skill of the SubX and

S2S models.

4. Comparing S2S and SubX models

a. Differences in SubX and S2S reforecast data

There are several differences in SubX and S2S data, which

can potentially lead to differences in prediction skill. As dis-

cussed in section 2, the MSLP is daily mean in the SubX

FIG. 4. (a) Area-averagedACC over all the grid points north of 108N. The solid lines show the averagedACC as a

function of ensemble size. Note that the mean of x axis is different for CFSv2 (see main text). The magenta dot

shows the prediction skill ECCC-GEPS5, ESRL-FIM, GMAO-GEOS, and RSMAS-CCSM4 combined ensemble.

The dashed red line and dashed blue line shows the averagedACCofMMEandMMEwithoutCFSv2, respectively.

(b) The solid lines are as in (a), but using the all available cases of individual models with no lead time, instead of

usingMME cases. The dashed lines are the ACC of different subsamples of CFSv2. The dashed lines and solid lines

in the same color have the same reforecast cases. Note the EMC-GEFS and ESRL-FIM have the same cases, and

the corresponding CFSv2 subsample is only shown in the dashed red line. (c) As in (b), but for 16-member NCEP-

CFSv2, with all members [cyan line; the same as the cyan line in (b)], withmembers has at least 1-day lead (red line),

2-days lead (blue line), and 3-days lead (orange line).
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ensemble archive while 0000 UTC instantaneous MSLP is ar-

chived in the S2S ensemble. In Fig. 5a, we compare the ACC

averaged over the NH (north of 108N) by using daily mean

MSLP (red line) and 0000 UTC MSLP (blue line) for all

available CFSv2 cases (daily) during 1999–2016. The verifica-

tion reanalysis data are ECA calculated from ERA-Interim

daily mean MSLP and 0000 UTC MSLP, respectively. The

prediction skill from ECA computed based on the different

MSLP data are different, especially when only using the first

few members of CFSv2. The skill attained by using daily mean

data (red) is a bit higher, possibly because daily mean data are

less noisy, as discussed in section 2. While this difference is not

large (,0.01), it is still about the same order of magnitude as

model to model difference in skill (Fig. 4b). The difference in

data availability (0000 UTC versus daily mean MSLP) is one

factor to be considered when comparing the SubX and

S2S models.

In addition, the overlapping period of the S2S models (both

in this study and in Z19) is 1997–2010, which is different from

the SubX overlapping period (1999–2016). Model prediction

skill during different time periods can be different, as shown in

Fig. 5b. We use all cases with no lead time from ECMWF

model during 1997–2010 (S2S overlapping period) and 1999–

2016 (SubX overlapping period) to calculate the NH (north of

108N) averaged prediction skill. The skill during 1997–2010

(blue) is higher than that during 1999–2016 (red). The spatial

patterns of the week 3–4 prediction skill during 1999–2016 and

1997–2010 are shown in Figs. 6a and 6c, respectively. One of

the reasons that may lead to the differences in model predic-

tion skill during different time periods is that predictability of

ECA during different time periods can be different. As dis-

cussed in Z19, ENSO is one of the major sources of predict-

ability of week 3–4 ECA. We plot the absolute value of ACC

between ENSO and reanalysis ECA during the two time pe-

riods (Figs. 6b,d) during the same reforecast cases in Figs. 6a

and 6c. The value of ACC between ENSO and ECA indicates

the potential predictability fromENSO. The spatial patterns in

Figs. 6b and 6d are similar to the prediction skill in Figs. 6a and

6c. Note that models are able to capture the correlation be-

tween ENSO and ECA as shown by Z19. The correlation be-

tween ENSO and ECA is higher during 1997–2010 (Fig. 6d)

than that during 1999–2016 (Fig. 6b). This can potentially be

one of the reasons why prediction skill during 1997–2010

(Fig. 6c) is higher than that during 1999–2016 (Fig. 6a).We also

plot the correlations between ENSO and ECA in individual

EMC-GEFS members (Fig. S9), which have similar spatial

patterns compared to the Reanalysis. Different models have

different reforecast initialization time, which also leads to

different prediction skill. These have been discussed in

section 3. When using the dates in the MME forecast, different

models have different lead time, and lead time will degrade the

skill (Fig. 4c). When using no lead time to compare different

models, then different initialization time of eachmodel leads to

different reforecast cases, resulting in differences in skill

(Fig. 4b cyan line and dashed lines).

The three factors mentioned above, related to differences in

data availability (0000 UTC versus daily mean MSLP), dif-

ferent reforecast time period, and different initialization time,

can all lead to differences in ACC of the order of 0.01 averaged

over NH, which is comparable to intermodel skill differences

(e.g., Figs. 4a,b). Therefore, to fairly compare the skill of dif-

ferent models, one need to use either 0000 UTC or daily mean

MSLP data for all the different models, with the same refor-

ecast cases during the same reforecast time period. As CFSv2 is

available daily with 6-hourly output, we can fairly compare the

skill between CFSv2 and any other model.

b. CFSv2 versus other models

As discussed above, a fair way to compare the skill of dif-

ferentmodels is to use the sameMSLP data (0000UTCor daily

FIG. 5. (a) NH averaged (north of 108N) CFSv2 week 3–4 ACC during 1999–2016 using all available CFSv2 cases

(no lead time) with daily mean data (red line) and 0000 UTC data (blue line). The meaning of horizontal axis is the

same as that in Fig. 4c. (b) NH averaged (north of 108N) ECMWFweek 3–4ACC using all available ECMWF cases

(no lead time) during 1999–2016 (red; SubX overlapping period) and 1997–2010 (blue; S2S overlapping period).
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mean) with the same initialization time during the same

reforecast period. Similar to section 3 (Fig. 4b), for any model

other than CFSv2, we can directly compare this model with

CFSv2 by using a subsample of CFSv2 with the same reforecast

cases as this model. For all the SubX and S2S models, this

comparison is performed during the overlapping period of the

SubX and S2S ensembles, which is DJF from 1999/2000 to

2009/10 (Fig. 7a for the S2S ensemble and Fig. 7b for the SubX

ensemble). So, the comparison between any model and

CFSv2, is during the same time period (1999–2010), with the

same reforecast cases (reforecast initialization times) be-

tween this model and CFSv2 (no lead time). Similar to

section 3a, the comparison between any model and CFSv2

can be done by comparing the dashed lines (CFSv2) and the

solid lines (the other model) in the same color. For example,

one can compare the ACC over the NH for ECMWF (solid

green line in Fig. 7a) and CFSv2 (dashed green line in Fig. 7a).

The spread of the dashed lines denotes the variability of

CFSv2 ACC in different subsamples of CFSv2. This vari-

ability of ACC is smaller than the intermodel differences of

ACC in the S2S ensembles (Fig. 7a). The skill of any model

minus CFSv2 skill is shown in the subpanel in Fig. 7a, pro-

viding an alternative illustration of the comparison between

any model and CFSv2.

FIG. 6. (a) As in Fig. 3, but for ECMWF prediction skill (no lead time) during 1999–2016. (b) Absolute value of

ACC between ERA-Interim week 3–4 extratropical cyclone activity and winter season mean (December–

February) Niño-3.4 index (also known as ONI) in same ECMWF cases in (a) during 1999–2016. (c) As in (a),

but for 1997–2010. (d) As in (b), but for the ECMWF cases in (c) during 1997–2010.

FEBRUARY 2021 ZHENG ET AL . 85

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 07:00 PM UTC



FIG. 7. (a) As in Fig. 4b, but for S2S models of individual S2S models cases in 1999–2010. The solid lines cor-

respond to the prediction skill using the all available cases of individual models with no lead time. The dashed lines

are the ACC of different subsamples of CFSv2. The dashed lines and solid lines in the same color have the same

reforecast cases. The subpanel below shows the skill differences between any model and CFSv2. (b) As in Fig. 4b,

but during 1999–2010 instead of 1999–2016. (c) As in Fig. 4a, but for the S2S ensemble during 1999–2010. The

dashedmagenta line, dashed red line, dashed blue line, and dashed orange line show the averagedACC over NH of

MME without NCEP-CFSv2, MME without ECMWF, ECMWF and NCEP-CFSv2 combined ensemble, and

MME, respectively. (d) As in Fig. 4a, but for 1999–2010 instead of 1999–2016.
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In the S2S ensemble (Fig. 7a), it is clear that ECMWF and

CFSv2 outperform the other models. The ACC of the 11-

member ECMWF with no lead time is higher than the 16-

member CFSv2. However, this does not necessarily mean that

ECMWF is a better model than CFSv2 in predicting the ECA.

As different CFSv2 members have different lead times, when

the ensemble size becomes larger, the averaged lead time of

CFSv2 also becomes larger. Thus, it is not exactly a fair com-

parison again between CFSv2 and ECMWF. In addition, the

ACC of the first three members of CFSv2 (solid cyan line in

Fig. 7a) is almost the same as that for ECMWF with the three

ensemble members. So, it is not clear that, if ECMWF and

CFSv2 reforecasts are initialized with the same frequency with

the same number of ensemble members, which model has

better prediction of ECA. Nevertheless, in practice, given that

we can only form lagged ensembles using CFSv2, ECMWF

ensemble with all members having zero lag is expected to

outperform lagged ensembles formed using CFSv2 forecasts.

This suggests an advantage of initializing multiple forecast

members at the same time. For the SubX ensemble (Fig. 7b),

similar to Fig. 4b, CFSv2 outperforms all the other SubX

models. The skill between EMC-GEFS andCFSv2 is close with

about 8–11 members. Similarly, this may be due to that CFSv2

has longer lead time when the ensemble size is larger, and

EMC-GEFS takes the advantage of initializing multiple fore-

cast members at the same time. Note that intermodel spread in

skill is smaller among SubX models compared to S2S models.

c. The S2S MME and the SubX MME

As discussed in section 2b, the ECA of the SubX and S2S

models cannot be combined into a ‘‘grand’’ ensemble. Here we

try to compare theMME skill of the S2S and SubX during their

overlapping time period in Figs. 7c and 7d. Note that, any

comparisons among the models within Fig. 7c or Fig. 7d, or

comparisons of the MME skill across Figs. 7c and 7d, are not

completely ‘‘fair.’’ Models have different lead time when they

are combined into theMME. Also, SubXMME and S2SMME

have different reforecast cases during 1999–2010. Here, the

focus is more on the relative contribution of differentmodels to

the MME skill. In addition to the S2S MME used in Z19,

CFSv2 is also included in the S2S MME in our analysis here.

Also note that ECCC-GEPS5, which is in both SubX and S2S

datasets, is not combined into the S2SMME (see Text S6). The

spatial patterns of ACC of the S2S models are shown in

Fig. S11, which are very similar to those shown in Z19. For the

S2S ensemble (Fig. 7c), ECMWF and CFSv2 outperform the

other S2S models. The ensemble mean ACC of CFSv2 is now

slightly better than the ensemble mean of ECMWF, which is

different from Fig. 7a. This is likely due to the fact that there

is a larger average lead time for ECMWF when combining the

models into the MME (also see discussions above). The aver-

aged ACC over NH for the MME without CFSv2 (magenta

dashed line in Fig. 7c) is very close to that for theMMEwithout

ECMWF (red dashed line in Fig. 7c). It is not surprising that

the full S2S ensemble (orange dashed line in Fig. 7c) has the

best prediction skill. Note that if we only combine the two best

models, which are ECMWF and CFSv2, the prediction skill

over NH of this 27-member ensemble (blue dashed line) is

comparable to that of the full S2S ensemble. This shows that

ECMWF and CFSv2 are probably the key contributors to the

ACC in the S2S MME.

In the SubX MME (Fig. 7d), as discussed in section 3a,

CFSv2 outperforms the other SubX models. The prediction

skill of the full S2S MME (65 members; orange dashed line in

Fig. 7c) is better than the full SubX MME (42 members; red

dashed line in Fig. 7d). The comparison across Figs. 7c and 7d is

not entirely fair, as the reforecast initialization times in the

MME cases are different and the data used is different (daily

mean for SubX versus 0000 UTC instantaneous for S2S).

However, the ACC variability due to different case selections

(e.g., spread of dashed lines in Figs. 7a,b) and due to different

MSLP data (Fig. 5a) probably will not change the conclusion

that S2S MME outperforms SubX MME. If we exclude the

ECMWF model from the S2S MME (red dashed line in

Fig. 7c), the prediction skill is then almost the same as the SubX

MME (red dashed line in Fig. 7d). This suggests that S2SMME

outperforms SubX MME because it benefits from the rela-

tively skillful ECMWF model.

5. Conclusions and discussion

In this study, we evaluate the prediction skill of extratropical

cyclone activity (ECA) on subseasonal time scales by models

that participated in the Subseasonal Experiment (SubX) and

those used in the Seasonal to Subseasonal Prediction (S2S)

project. Consistent with Z19, the regions where the anomaly

correlation coefficient (ACC) is high are over east Asia, the

central and eastern North Pacific, central North America, the

Gulf of Mexico and western Caribbean Sea, the central North

Atlantic, as well as Scandinavia and the Norwegian Sea. CFSv2

has the best prediction skill among the SubXmodels. The other

models have relatively similar prediction skill when the en-

semble size is the same, and EMC-GEFS has relatively higher

prediction skill as it has a relatively larger ensemble size.

Consistent with previous studies, we find that combining dif-

ferent CFSv2 members into a lagged ensemble improves the

forecast skill, with forecasts up to 4 days old still marginally

improving the skill of the lagged ensemble for predicting weeks

3–4 ECA. Thus a 16-member CFSv2 lagged ensemble is used in

this study.

The SubX and S2S models have different configurations.

The forecast initialization time is different, and the SubX ar-

chives daily mean MSLP while S2S archives instantaneous

MSLP. The large differences in variability of ECA because of

the different archived data make it inappropriate to combine

the SubXmodels and S2S models into a ‘‘grand’’ ensemble. As

different forecast initialization times, different MSLP data

availability (0000 UTC versus daily mean), and different re-

forecast time periods can all lead to different model prediction

skill, it is not straightforward to compare the ECA prediction

skill between the S2S and SubX models. As CFSv2 has fre-

quent forecast and reforecast initialized every 6 h, with

6-hourly output available, we are able to compare the ECA

prediction skill between any model and CFSv2 in a fair way by

using a subsample of CFSv2. This allows the CFSv2 to be

used as a baseline to evaluate the skill of the various models.
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The setup of the CFSv2 reforecast, which is different from

many other models, makes CFSv2 the best choice to be con-

structed into an ensemble that is ‘‘initialized’’ daily. Note that

here we are emphasizing CFSv2 because we want to develop a

fair way to compare the skill of different models. Our methods

and findings should not be treated as implications about whether

it is better to initialize reforecast every 6 h with one model

member (as CFSv2 does), or to initialize reforecast with an en-

semble of members with longer intervals (a few days) between

reforecast initialization times (the way of most other models).

In terms of single model performance, ECMWF and CFSv2

are the two best models that are examined in the study. The

prediction skill of the S2S ensemble is better than the SubX

ensemble when averaged over the Northern Hemisphere,

which is probably because ECMWF is included in the S2S

ensemble but not in the SubX ensemble. It should be noted

that as ECMWF has 51 members in the operational forecast

and only 11 members in the reforecast. Although some of the

SubX models also have more members in real time forecast

than in reforecast, the increase of the ensemble size is not as

large as the increase for ECMWF. These suggest that the S2S

ensemble could provide higher prediction skill in real time

forecasts.

As discussed in section 4, combining the two best models

(ECMWF and CFSv2) in S2S provides prediction skill com-

parable with the entire S2S ensemble. Practically, only com-

bining two models is much easier than constructing the MME

for the entire S2S ensemble. Note that if we only use ECMWF

and CFSv2, as CFSv2 ensemble is available every day, one can

just use the days when ECMWF initializes a forecast to con-

struct this two-model ensemble. As there will be no lead time

for ECMWF, the prediction skill can be even higher. However,

both ECMWF and CFSv2 have different real-time forecast

configurations compared to their reforecast configurations.

CFSv2 has 16 members per day in the real time forecast (4

members in the reforecast). As ECMWF has 51 members in

real time forecast (11 members in reforecast), the ECMWF

ensemble probably will still outperform the CFSv2 ensemble in

the real time forecast. An interesting question that can be ex-

plored in the future study is: How skillful would a real-time

version of this two-model ensemble be for analyzing and pre-

dicting ECA?

MSLP, which is used to calculate ECA, is archived differ-

ently in S2S (instantaneously at 0000 UTC) and SubX (daily

average) models. In this study, we develop a method to com-

pare the model prediction skill of ECA by using CFSv2. Our

results suggest that the prediction skill of ECA is somewhat

sensitive to whether the MSLP data are archived daily or in-

stantaneously, with daily mean data resulting in smoother

ECA fields that may be predicted with slightly higher skill.

Similar to MSLP, variables like geopotential height and wind

field are also archived differently in S2S and SubX. The

method developed in this study could be useful in comparing

prediction skill of these variables in the future between models

with different setups.
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